
EXTENDING THE CAPABILITIES 
OF CATIA MAGIC



Tim Anderson
Co-founder/COO
Enola Technologies



Outline

 Promises of MBSE

 What Can We Make CATIA Magic Do?

 Where Can the API Be Used?

 What Is the Open API?

 Managing Extensions

 Demo of Macros



Promises of MBSE

 Model Analysis
 Full Traceability
 Improved Content

 Validation
 Verification

 Trade Studies
 Custom Reporting
 Automations

CATIA Magic provides all of this, but it is capable of so much more!



What Can We Make CATIA Magic Do?

 Anything we can imagine!*
 *and develop

 CATIA Magic utilizes a Java Application 
Programming Interface (API) for its main 
application and plugins
 Not the same as TWC’s REST API

 This API is full of software designed to help build 
the functionality that makes CATIA Magic so 
powerful

 Some of the API is Closed (subject to change) while 
the rest is Open (relatively stable between releases)

 CATIA Magic provides several methods for 
accessing and utilizing its Open API



Where Can the API Be Used?



Simulation

 Accessible in Many Forms:
 Activity Diagrams

 Opaque Actions
 Guards

 State Machine Diagrams
 Behaviors (Entry/Do/Exit/Effect)
 Guards
 Change Events

 Parametric Diagrams
 Constraint Blocks

 Can simplify simulation models by
shortcutting formal constructs with 
code



Structured Expressions

 Accessible in Many Forms:
 Custom Columns / Derived Properties
 Dynamic Legends
 Validation Rules

 Script is selectable as an operation in
the Structured Expression window

 Parameters can be added to the
operation at will and referenced 
directly in the script

 Scripts are often used to more easily 
collect data for queries and to 
perform mathematical operations 
(e.g. calculating percentages)



Automations and Feature Extensions

 Plugins and macros provide 
additional functionality to the already 
feature-heavy CATIA Magic 
application

 Both utilize the API and much of what 
can be done could be written as a 
plugin OR macro

 Macros are generally used for 
automating tasks and scalably
transforming model content

 Plugins are generally used to add new
features, often in the menu bar, like 
wizards and or event-listeners



Plugins vs Macros

Plugins
 Pros:

 Can Add Custom Menu Options
 Is Multi-threaded
 Can Listen For, Catch, and React to 

Events
 Can be Bundled into an Installation 

Package for a Team

 Cons:
 Must Be Compiled in Java
 Must Be Installed on each User’s Cameo 

Application

Macros
 Pros:

 Multiple Languages Supported
 Easy to Execute

 Can be Hot-keyed
 No Installation Needed
 Can Be Added to Projects and Managed 

in TWC

 Cons:
 Is Single-threaded
 Cannot Catch Events



What is the Open API?



Java API

 An API is a way for two computer 
applications to communicate with 
each other via software code
 It’s a type of software interface that 

offers “services” to other pieces of 
software

 An application’s API consist of a set 
of classes that are made available to 
developers to use in their 
applications
 APIs don’t include ALL classes for 

application (Open vs Closed API), just 
the ones made available for use for 
interfacing with the application

 API’s hide the internal details of how a 
system or application works, but expose 
parts that may be useful for developers



UML Metamodel Classes

 Every class in UML is 
represented by a Java class in 
the API that conforms to the 
UML specification by the OMG

 These classes provide access to 
get or set the fields in the 
Specification Window

 Notably, we do NOT use 
Constructors to create these 
elements

 The ElementsFactory is needed
for this

 Once the UML element is
created, stereotypes are
placed on top using a helper 
class

 Element
 Parent of All
 element.get_relationshipOfRelatedElement() returns all relationships for an element
 element.getOwnedElement() returns all owned elements underneath this element (DOWN)
 element.getOwner() returns the owner of this element (UP)
 element.setOwner(someElement) places the element in the Containment Tree

 Relationship
 Parent of All Relationships

 NamedElement
 Provides the Name property (not all elements have a name)

 Package / Model
 Containers within UML

 Class / Property
 Common UML structural elements

 Diagram
 Any diagram in Cameo (the type is determined by a property called DiagramType)

 PresentationElement / DiagramPresentationElement
 Symbols on diagrams
 presentationElement.getElement() returns the element for the symbol



Application Classes (1)

 The Application 
Classes consist of 
the main classes in 
the User Interface

 Nearly every 
automation begins 
with accessing the 
Application 
Instance, its 
GUILog, and its 
active Project.

 If the model is to be
edited, a session 
must first be 
created and then 
closed when 
completed.

 Application
 The main class for current instance of CATIA Magic running
 Getting the Instance of from Application is usually the first thing done in

plugins/macros
 MainFrame

 The primary graphical user interface (GUI) of CATIA Magic
 Provides access to the menus and for syncing windows created

 GUILog
 The log file class for CATIA Magic

 Project
 The instance of the project(s) active in the instance of CATIA Magic
 Provides access to the root of the Containment Tree

 ElementsFactory
 The element creation mechanism for a project

 SessionManager
 Manages sessions for actions taken in CATIA Magic (for undoing/redoing)



Application Classes (2)

 Useful functions:
 Application.getInstance().getProject()

 Get active project element
 Application.getInstance().getMainFrame()

 Get access to the GUI of CATIA Magic
 Application.getInstance().getGUILog().log(“Hello World”)

 Print to the log file
 project.getPrimaryModel()

 Returns the root Model element in the Containment Tree
 A great starting point for traversing the entire model

 project.getElementsFactory()
 Gets the elementsFactory to create new elements

 elementsFactory.createMETACLASSInstance()
 Creates a new element of type METACLASS

 mainFrame.getMainMenuBar()
 Gets the File -> Edit -> View etc. Menu Bar to add new buttons

 SessionManager.getInstance().createSession(“Session Name Here”)
 Creates a new session for making edits to the model

 SessionManager.getInstance().closeSession()
 Closes the active session



Helper Classes (1)

 The Helper Classes 
provide useful 
features for 
working in the 
UML framework

 The most useful is
typically
StereotypesHelper
 This applies

stereotypes,
searches for
elements, and
gets and sets 
tagged values

 StereotypesHelper
 Primary helper for working with stereotypes on elements and their tagged 

values

 CoreHelper
 Gets/sets the documentation of elements
 Gets/sets the source and target (client/supplier) of relationships

 Finder
 A utility class for finding elements within the Containment Tree meeting 

given criteria

 ElementSelectionDlgFactory
 A factory for creating a Select Element Window in CATIA Magic
 Many options available for single/multi-select, default options selected, 

and element creation allowed in window



Helper Classes (2)

 Useful functions:
 StereotypesHelper.addStereotype(someElement,someStereotype)

 Adds a stereotype to an element
 StereotypesHelper.hasStereotype(someElement,someStereotype)

 Checks if the element has a specific stereotype
 StereotypesHelper.getStereotypePropertyValue(someElement,someStereotype,”TagName”)

 Gets the Tagged Value of the element
 StereotypesHelper.setStereotypePropertyValue(someElement,someStereotype,”TagName”,value)

 Sets the Tagged Value of the element
 StereotypesHelper.getStereotypedElements(someStereotype)

 Returns ALL elements with that stereotype applied
 CoreHelper.getComment(someElement)

 Gets the documentation for an element
 CoreHelper.getClientElement(someRelationship)

 Gets the client/source of a relationship
 CoreHelper.getSupplierElement(someRelationship)

 Gets the supplier/target of a relationship
 Finder.byQualifiedName().find(project,”QUALIFIEDNAME”)

 Finds the element with the given qualified name



Requirement Creation Sample



Managing Extensions



Managing Extensions

 Structured Expressions
 Structures expressions can be stored 

and reused within profiles as 
OpaqueBehaviors

 Parameters for inputs are created within 
OpaqueBehaviors and are assignable 
within the Structured Expression

 The Structured Expression is stored
within the Body and Language property 
of the OpaqueBehavior

 Simulation
 Code for simulations is stored within the 

behaviors/constraints of an Activity, 
State Machine, or Parametric Diagram.



Managing Plugins

 Plugins
 Plugin code should be managed with an 

external repository such as GitHub
 Once compiled and installed, the code 

stays locked within the plugins directory 
of the installation

 Plugin code is often developed in IDEs
such as IntelliJ, Eclipse, and NetBeans

 Most users will require IT support to 
install plugins into CATIA Magic



Managing Macros

 Macros
 Macro code can be stored within the application 

OR a project.
 Macros stored to the application are added to the 

Tools -> Macros menu and can be run on any 
project within THAT instance of CATIA Magic.

 Each user needing to run the macro would load it into 
their application using Tools -> Macros -> Organize 
Macros

 This does NOT require elevated privileges
 Macros stored to a project are maintained in a 

Macro type element
 The MacroEngine profile is loaded automatically

 All Macros in a project are automatically available 
to all users of the project under Tools -> Macros

 Macros can be developed in IDEs (like Plugins) or 
in advanced text editors such as Sublime or 
Notepad++



Best Practices

 When developing any extension for CATIA Magic, always consider the range of 
users for the extension
 The broader the audience, the more resilient the extension needs to be to users 

improperly using the code or bad data being used with it
 For very specific applications, only key users should have access to extensions

 Macros stored in projects are model elements and are thus subject to version
controlling in TWC

 Plugins should be CMed per the organization’s standard operating procedure
 For wizards and large functionality used by a team, plugins are best suited
 For automations, transformations, or reports, macros are best suited



Demo of Macros




