
EXTENDING THE CAPABILITIES 
OF CATIA MAGIC



Tim Anderson
Co-founder/COO
Enola Technologies



Outline

 Promises of MBSE

 What Can We Make CATIA Magic Do?

 Where Can the API Be Used?

 What Is the Open API?

 Managing Extensions

 Demo of Macros



Promises of MBSE

 Model Analysis
 Full Traceability
 Improved Content

 Validation
 Verification

 Trade Studies
 Custom Reporting
 Automations

CATIA Magic provides all of this, but it is capable of so much more!



What Can We Make CATIA Magic Do?

 Anything we can imagine!*
 *and develop

 CATIA Magic utilizes a Java Application 
Programming Interface (API) for its main 
application and plugins
 Not the same as TWC’s REST API

 This API is full of software designed to help build 
the functionality that makes CATIA Magic so 
powerful

 Some of the API is Closed (subject to change) while 
the rest is Open (relatively stable between releases)

 CATIA Magic provides several methods for 
accessing and utilizing its Open API



Where Can the API Be Used?



Simulation

 Accessible in Many Forms:
 Activity Diagrams

 Opaque Actions
 Guards

 State Machine Diagrams
 Behaviors (Entry/Do/Exit/Effect)
 Guards
 Change Events

 Parametric Diagrams
 Constraint Blocks

 Can simplify simulation models by
shortcutting formal constructs with 
code



Structured Expressions

 Accessible in Many Forms:
 Custom Columns / Derived Properties
 Dynamic Legends
 Validation Rules

 Script is selectable as an operation in
the Structured Expression window

 Parameters can be added to the
operation at will and referenced 
directly in the script

 Scripts are often used to more easily 
collect data for queries and to 
perform mathematical operations 
(e.g. calculating percentages)



Automations and Feature Extensions

 Plugins and macros provide 
additional functionality to the already 
feature-heavy CATIA Magic 
application

 Both utilize the API and much of what 
can be done could be written as a 
plugin OR macro

 Macros are generally used for 
automating tasks and scalably
transforming model content

 Plugins are generally used to add new
features, often in the menu bar, like 
wizards and or event-listeners



Plugins vs Macros

Plugins
 Pros:

 Can Add Custom Menu Options
 Is Multi-threaded
 Can Listen For, Catch, and React to 

Events
 Can be Bundled into an Installation 

Package for a Team

 Cons:
 Must Be Compiled in Java
 Must Be Installed on each User’s Cameo 

Application

Macros
 Pros:

 Multiple Languages Supported
 Easy to Execute

 Can be Hot-keyed
 No Installation Needed
 Can Be Added to Projects and Managed 

in TWC

 Cons:
 Is Single-threaded
 Cannot Catch Events



What is the Open API?



Java API

 An API is a way for two computer 
applications to communicate with 
each other via software code
 It’s a type of software interface that 

offers “services” to other pieces of 
software

 An application’s API consist of a set 
of classes that are made available to 
developers to use in their 
applications
 APIs don’t include ALL classes for 

application (Open vs Closed API), just 
the ones made available for use for 
interfacing with the application

 API’s hide the internal details of how a 
system or application works, but expose 
parts that may be useful for developers



UML Metamodel Classes

 Every class in UML is 
represented by a Java class in 
the API that conforms to the 
UML specification by the OMG

 These classes provide access to 
get or set the fields in the 
Specification Window

 Notably, we do NOT use 
Constructors to create these 
elements

 The ElementsFactory is needed
for this

 Once the UML element is
created, stereotypes are
placed on top using a helper 
class

 Element
 Parent of All
 element.get_relationshipOfRelatedElement() returns all relationships for an element
 element.getOwnedElement() returns all owned elements underneath this element (DOWN)
 element.getOwner() returns the owner of this element (UP)
 element.setOwner(someElement) places the element in the Containment Tree

 Relationship
 Parent of All Relationships

 NamedElement
 Provides the Name property (not all elements have a name)

 Package / Model
 Containers within UML

 Class / Property
 Common UML structural elements

 Diagram
 Any diagram in Cameo (the type is determined by a property called DiagramType)

 PresentationElement / DiagramPresentationElement
 Symbols on diagrams
 presentationElement.getElement() returns the element for the symbol



Application Classes (1)

 The Application 
Classes consist of 
the main classes in 
the User Interface

 Nearly every 
automation begins 
with accessing the 
Application 
Instance, its 
GUILog, and its 
active Project.

 If the model is to be
edited, a session 
must first be 
created and then 
closed when 
completed.

 Application
 The main class for current instance of CATIA Magic running
 Getting the Instance of from Application is usually the first thing done in

plugins/macros
 MainFrame

 The primary graphical user interface (GUI) of CATIA Magic
 Provides access to the menus and for syncing windows created

 GUILog
 The log file class for CATIA Magic

 Project
 The instance of the project(s) active in the instance of CATIA Magic
 Provides access to the root of the Containment Tree

 ElementsFactory
 The element creation mechanism for a project

 SessionManager
 Manages sessions for actions taken in CATIA Magic (for undoing/redoing)



Application Classes (2)

 Useful functions:
 Application.getInstance().getProject()

 Get active project element
 Application.getInstance().getMainFrame()

 Get access to the GUI of CATIA Magic
 Application.getInstance().getGUILog().log(“Hello World”)

 Print to the log file
 project.getPrimaryModel()

 Returns the root Model element in the Containment Tree
 A great starting point for traversing the entire model

 project.getElementsFactory()
 Gets the elementsFactory to create new elements

 elementsFactory.createMETACLASSInstance()
 Creates a new element of type METACLASS

 mainFrame.getMainMenuBar()
 Gets the File -> Edit -> View etc. Menu Bar to add new buttons

 SessionManager.getInstance().createSession(“Session Name Here”)
 Creates a new session for making edits to the model

 SessionManager.getInstance().closeSession()
 Closes the active session



Helper Classes (1)

 The Helper Classes 
provide useful 
features for 
working in the 
UML framework

 The most useful is
typically
StereotypesHelper
 This applies

stereotypes,
searches for
elements, and
gets and sets 
tagged values

 StereotypesHelper
 Primary helper for working with stereotypes on elements and their tagged 

values

 CoreHelper
 Gets/sets the documentation of elements
 Gets/sets the source and target (client/supplier) of relationships

 Finder
 A utility class for finding elements within the Containment Tree meeting 

given criteria

 ElementSelectionDlgFactory
 A factory for creating a Select Element Window in CATIA Magic
 Many options available for single/multi-select, default options selected, 

and element creation allowed in window



Helper Classes (2)

 Useful functions:
 StereotypesHelper.addStereotype(someElement,someStereotype)

 Adds a stereotype to an element
 StereotypesHelper.hasStereotype(someElement,someStereotype)

 Checks if the element has a specific stereotype
 StereotypesHelper.getStereotypePropertyValue(someElement,someStereotype,”TagName”)

 Gets the Tagged Value of the element
 StereotypesHelper.setStereotypePropertyValue(someElement,someStereotype,”TagName”,value)

 Sets the Tagged Value of the element
 StereotypesHelper.getStereotypedElements(someStereotype)

 Returns ALL elements with that stereotype applied
 CoreHelper.getComment(someElement)

 Gets the documentation for an element
 CoreHelper.getClientElement(someRelationship)

 Gets the client/source of a relationship
 CoreHelper.getSupplierElement(someRelationship)

 Gets the supplier/target of a relationship
 Finder.byQualifiedName().find(project,”QUALIFIEDNAME”)

 Finds the element with the given qualified name



Requirement Creation Sample



Managing Extensions



Managing Extensions

 Structured Expressions
 Structures expressions can be stored 

and reused within profiles as 
OpaqueBehaviors

 Parameters for inputs are created within 
OpaqueBehaviors and are assignable 
within the Structured Expression

 The Structured Expression is stored
within the Body and Language property 
of the OpaqueBehavior

 Simulation
 Code for simulations is stored within the 

behaviors/constraints of an Activity, 
State Machine, or Parametric Diagram.



Managing Plugins

 Plugins
 Plugin code should be managed with an 

external repository such as GitHub
 Once compiled and installed, the code 

stays locked within the plugins directory 
of the installation

 Plugin code is often developed in IDEs
such as IntelliJ, Eclipse, and NetBeans

 Most users will require IT support to 
install plugins into CATIA Magic



Managing Macros

 Macros
 Macro code can be stored within the application 

OR a project.
 Macros stored to the application are added to the 

Tools -> Macros menu and can be run on any 
project within THAT instance of CATIA Magic.

 Each user needing to run the macro would load it into 
their application using Tools -> Macros -> Organize 
Macros

 This does NOT require elevated privileges
 Macros stored to a project are maintained in a 

Macro type element
 The MacroEngine profile is loaded automatically

 All Macros in a project are automatically available 
to all users of the project under Tools -> Macros

 Macros can be developed in IDEs (like Plugins) or 
in advanced text editors such as Sublime or 
Notepad++



Best Practices

 When developing any extension for CATIA Magic, always consider the range of 
users for the extension
 The broader the audience, the more resilient the extension needs to be to users 

improperly using the code or bad data being used with it
 For very specific applications, only key users should have access to extensions

 Macros stored in projects are model elements and are thus subject to version
controlling in TWC

 Plugins should be CMed per the organization’s standard operating procedure
 For wizards and large functionality used by a team, plugins are best suited
 For automations, transformations, or reports, macros are best suited



Demo of Macros




