
Automatically Generating Ontologies: A Case Study Examining the Lifecycle Modeling Language (LML)

Abstract

This study explores versioning of the Lifecycle Modeling Language (LML) ontology to address methods of
constructing an unambiguous terminology. LML is a robust graphical modeling language that supports
system development and design while adhering to systems engineering (SE) processes. Part of speech
(POS) tagging is implemented with Python to extract ontological classes and object properties. Based on
the research conclusions, innovative ontology techniques are established for the wider technical
community to use and improve. These new methods will contribute to the modernization of manual
approaches to creating ontologies. This paper/presentation begins by introducing key concepts based on
a scholarly literature review. Research means will be described in detail with a subsequent discussion of
limitations and results. After analysis, conclusions and recommendations will be provided. Future work
is anticipated to contribute to ontology development.

Introduction
Systems engineering (SE) is responsible for delivering artifacts during product development and design
that enable unambiguous communication among stakeholders. By constructing structural and
behavioral models in a virtual environment, errors are caught earlier within the project lifecycle and can
be mitigated with minimal effect of cost. A model that is viewed as an authoritative-source-of-truth
(ASoT) enhances cross-discipline communication and encourages team collaboration.

There is a need to increase the speed in which formal ontologies are created. This research leverages
the existing Lifecycle Modeling Language (LML) ontology to understand ways that modern technology
enhances language development based on textual specifications.

Background
LML is an open-standard modeling language for SEs that supports the full product lifecycle and the
integration with other project disciplines (Vaneman, et al., 2018). LML incorporates data-driven
engineering into a standard that satisfies the following SE needs:

• easy to understand
• easy to extend
• supports functional and object-oriented approaches
• useful for stakeholders across the system life cycle
• supports all project life cycle stages from concept to disposal

Figure 1 highlights the four (4) core LML tenets.

Figure 1 Essential LML tenets.

LML seeks to address discrepancies inherent to modeling languages that were created without a
foundational ontology. The language represents functional and physical system aspects and introduces a
hierarchy of classes that enable practitioners to capture essential design elements and the associated
information (Vaneman, et al., 2018).

Modeling languages capture a formalized ontology (i.e., internal logic) to connect relationships and
facilitate data sharing between tools (Vaneman, et al., 2018). Without clear agreement on basic
terminology and relationships, a system becomes susceptible to failure (Madni & Sievers, 2018). A
common characteristic of ontology engineering methods is the notion of a process model that guides
activities to yield a consistent set of roles and policies (Simperl & Luczak-Rösch, 2014). Research
performed by Yang et al., 2019, describes how ontologies benefit the SE discipline. The authors conclude
that ontologies provide a uniform and consistent basis for knowledge representation.

Ontologies are viewed as the interface between the knowledge base and reality that guides information
shareability, acquisition, and organization (Kang, et al., 2010). According to Noy & McGuinness, 2001,
reasons for ontology development include:

• Creating a common understanding
• Enabling reuse of domain knowledge
• Explicitly defining domain assumptions
• Analysis of domain knowledge

A critical aspect of ontologies is the ability to execute data reasoners that produce semantic
relationships, which is made possible due with formal logic languages that represent ontologies (Bravo,
et al., 2019). Ontologies are the primary and most important component of the semantic web (Sattar, et
al., 2020). The semantic web is a network of linked data (LD) and its exchange as defined by WC3.
Mediator systems federate and integrate data from disparate sources to elicit information that cannot
be provided by an individual source (Ludascher, et al., 2001). Semantic web concepts provide
opportunities for an easier and more collaborative environment between teams and modeling tools
(Jacobs, et al., 2014).

The LML taxonomy relies on the basic foundational ontology (BFO), a high-level ontology developed and
designed to represent common categories of domain-specific languages (DSL) [Arp & Smith, 2011]. This
specification is the basis for modern ontology languages. BFO gives structure to domain ontologies and
is comprised of (1) continuants: entities that continue or persist through time, and (2) occurrents: the
events in which continuants participate. Figure 2 shows the decomposition of the BFO continuant class.

Figure 2 BFO continuants.

The Web Ontology Language (OWL) is a syntax independent language that has several common
representations (Drummond, 2006). OWL ontologies map to resource description framework (RDF)
graphs and include annotations of classes and properties. OWL can enhance both precision and
accessibility, but it requires mediation to enhance model semantics and resolve conflicts (Kulvatunyou,
at al., 2014). RDF provides a common approach for expressing information to prevent data exchange
between software applications from losing meaning (W3C, 2004). Each entity is given a unique
internationalized resource identifier (IRI) to ensure statements are machine-readable. RDF defines all
data as triples composed of a subject, predicate, and object (SPO) [Ernadote, 2015]. Each RDF triple
represents a statement (i.e., fact) of a relationship between the subject and the object (Angles &
Gutierrez, 2008). The SPO approach aligns with a graph-based data model profile that uses nodes and
edges to convey domain structure.

Terse RDF Triple Language (Turtle) allows an RDF graph to be written in a compact, natural text form
(OMG, 2014) and facilitates the automatic transformation of data by direct mapping. Python has the
ability to create Turtle files that are interpretable by ontology editors and include classes, object
properties, and data properties (Permatasari & Jayadianti, 2022). Given the similarities between
ontologies and relational databases (RDB) [Zhang & Li, 2011], there is an expectation that this
information can be transformed directly into axioms by directly mapping the corresponding fields. An
axiom defines concepts that are always true (Blázquez, et al., 1998). Classes represent domain concepts
while object properties describe the relationships between classes (Noy & McGuinness, 2001).

A natural language processing (NLP) token is a group of characters (i.e., string) that represents a single
meaning. Part-of-speech (POS) tagging is a grammatical classification used in NLP to identify individual
words as a noun, adjective, verb, etc (Chiche & Yitagesu, 2022). The Natural Language Toolkit (NLTK)
within Python is a platform that works with human-interpretable languages libraries that support
tokenization, parsing, and semantic reasoning (Bird, et al., 2009).

Methodology
The NLTK library was leveraged to organize the ontology data related to POS. For this research, modern
AI applications (e.g., ChatGPT, Claude.ai) were prompted to code Python scripts that will assist in
ontology construction. The PyCharm integrated development environment (IDE) was used with Python
to extract nouns (i.e., classes) and verbs (i.e., object properties). The LML v1.4 specification was loaded
into the virtual environment for NLP parsing. Plurals of nouns were removed from the findings and

variations of verbs were removed (e.g., “working” instead of “work”). Python proved able to produce a
Turtle (.ttl) file with classes, object properties, and inverse object properties with proper prompt
engineering.
The initial ontology
(http://www.semanticweb.org/stevendam/ontologies/2017/4/lifecyclemodelinglanguage.owl) is based
on LML v1 (LML Steering Committee, 2015) and was last updated in 2017 according to the
documentation.

Figure 3 visually represents the LML v1 taxonomy.

Figure 3 LML v1 taxonomy

Table 1 shows basic metrics of the LML v1.1 ontology.

Table 1 LML v1 Ontology Metrics

METRIC AMOUNT
AXIOM 1011
CLASSES 20
OBJECT PROPERTIES 87

Figure 4 shows the twenty (20) core LML classes as nodes within the Protégé ontology editor using the
Ontograf plug-in.

http://www.semanticweb.org/stevendam/ontologies/2017/4/lifecyclemodelinglanguage.owl

Figure 4 LML core entities represented as nodes.

Figure 5 shows a subset of LML core entities represented as nodes and the relationships between them
as arcs. The graphic exemplifies the complexity of predicates between subjects and objects.

Figure 5 Subset of LML entities with relationships.

Relationships (i.e., predicates) are shown as arcs connecting the nodes (i.e., subjects and objects).

Results
After brief cleaning of the .csv files output by the Python code, the entire LML v1.4 specification
document resulted in 426 classes and 278 predicates (and therefore 278 inverse predicates) for a total
of 556 object properties. Applying the maximum multiplier (~21) and the minimum multiplier (~7) to the

number of axioms resulted in an estimated 7,077 and 21,231, respectively. Applying the ~14 average to
the initial number of axioms, approximately 14,000 are present in the specification itself as shown in
Table 2.

Table 2 Corrected LML v1 ontology metrics.

METRIC INITIAL FINAL MULTIPLIER
AXIOM 1,011 14,000 13.8
CLASSES 20 426 21.3
OBJECT PROPERTIES 87 556 6.4

The vast difference between the LML v1 specification and the official OWL file is not unique, yet
highlights universal difficulties encountered when constructing modeling languages that meet
stakeholder needs while being machine and human interpretable to enhance collaboration and
communication.

Python code is currently being developed to extract RDF triples directly from a .txt file and each inverse
statement. The first viable iteration of this implementation resulted in almost 115,000 triples (and
therefore an equivalent amount of inverse triples), which suggests an exponential increase in triples
based on classes and object properties within an ontology shown in Table 3.

Table 3 Calculated LML v1 ontology metrics.

METRIC INITIAL FINAL MULTIPLIER
AXIOM 1,011 230,000 227.5
CLASS 20 426 21.3
OBJECT PROPERTIES 87 556 6.4

Figure 6 further demonstrates the exponential pattern involved in the axiom relationship with the
iterations of varying classes and object properties.

Figure 6 Trendlines of LML v1 ontological axiom data.

y = 1117.9e-1.786x

R² = 0.9947

y = -110.55x + 306.17
R² = 0.8003

-50

0

50

100

150

200

250

1 2 3

Axioms of LMLv1 Ontology

Refinement to this approach is ongoing to reduce noise and clarify explicit triples within the LML
specification. Future research will apply this methodology to assess additional modeling languages
specific to the SE domain.

References
Angels, R., & Gutierrez, C. (2008). Survey of graph database models. ACM Computing Surveys, 40(1), 1–

39. https://doi.org/10.1145/1322432.1322433
Arp, R., & Smith, B. (2011). Realizable Entities in Basic Formal Ontology.
Bird, S., Loper, E. & Klein, E. (2009), Natural Language Processing with Python. O’Reilly Media Inc.
Blázquez, M., Fernández, M., García-Pinar, J. M., & Gómez-Pérez, A. (1998). Building Ontologies at the

Knowledge Level using the Ontology Design Environment.
Bravo, M., Hoyos Reyes, L. F., Reyes Ortiz, J. A., Bravo, M., Hoyos Reyes, L. F., & Reyes Ortiz, J. A. (2019).

Methodology for ontology design and construction. Contaduría y Administración, 64(4).
https://doi.org/10.22201/fca.24488410e.2020.2368

Chiche, A., & Yitagesu, B. (2022). Part of speech tagging: A systematic review of deep learning and
machine learning approaches. Journal of Big Data, 9(1), 10. https://doi.org/10.1186/s40537-
022-00561-y

Dam, S. (2022). Lifecycle Modeling Language (LML) SPECIFICATION.
Drummond, N. (2006). A Practical Introduction to Protégé OWL.
Ernadote, D. (2015). An ontology mindset for system engineering (p. 460).

https://doi.org/10.1109/SysEng.2015.7302797
Feuerriegel, S., Hartmann, J., Janiesch, C., & Zschech, P. (2024). Generative AI. Business & Information

Systems Engineering, 66(1), 111–126. https://doi.org/10.1007/s12599-023-00834-7
Jacobs, S., Wengrowicz, N., & Dori, D. (2014). Defining Object-Process Methodology in Web Ontology

Language for Semantic Mediation. 2014 IEEE International Conference on Software Science,
Technology and Engineering, 87–95. https://doi.org/10.1109/SWSTE.2014.14

Kang, D., Lee, J., Choi, S., & Kim, K. (2010). An ontology-based Enterprise Architecture. Expert Systems
with Applications, 37(2), 1456–1464. https://doi.org/10.1016/j.eswa.2009.06.073

Kulvatunyou, B., Ivezic, N., Lee, Y., & Shin, J. (2014). An analysis of OWL-based semantic mediation
approaches to enhance manufacturing service capability models. International Journal of
Computer Integrated Manufacturing, 27(9), 803–823.
https://doi.org/10.1080/0951192X.2013.834477

Ludascher, B., Gupta, A., & Martone, M. E. (2001). Model-based mediation with domain maps.
Proceedings 17th International Conference on Data Engineering, 81–90.
https://doi.org/10.1109/ICDE.2001.914816

Madni, A. M., & Sievers, M. (2018). Model-Based Systems Engineering: Motivation, Current Status, and
Needed Advances. In A. M. Madni, B. Boehm, R. G. Ghanem, D. Erwin, & M. J. Wheaton (Eds.),
Disciplinary Convergence in Systems Engineering Research (pp. 311–325). Springer International
Publishing. https://doi.org/10.1007/978-3-319-62217-0_22

Nargesian, F., Samulowitz, H., Khurana, U., Khalil, E. B., & Turaga, D. (2017). Learning Feature
Engineering for Classification. Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, 2529–2535. https://doi.org/10.24963/ijcai.2017/352

Noy, N. F., & McGuinness, D. L. (2001). Ontology Development 101: A Guide to Creating Your First
Ontology.

Sattar, A., Salwana, E., Surin, M., Ahmad, M., Malaysia, U., Bangi, Kfueit, Khan, R., Ahmad, M., &
Mahmood, A. K. (2020). Comparative Analysis of Methodologies for Domain Ontology

https://doi.org/10.1145/1322432.1322433
https://doi.org/10.22201/fca.24488410e.2020.2368
https://doi.org/10.1186/s40537-022-00561-y
https://doi.org/10.1186/s40537-022-00561-y
https://doi.org/10.1109/SysEng.2015.7302797
https://doi.org/10.1007/s12599-023-00834-7
https://doi.org/10.1109/SWSTE.2014.14
https://doi.org/10.1016/j.eswa.2009.06.073
https://doi.org/10.1080/0951192X.2013.834477
https://doi.org/10.1109/ICDE.2001.914816
https://doi.org/10.1007/978-3-319-62217-0_22
https://doi.org/10.24963/ijcai.2017/352

Development: A Systematic Review. International Journal of Advanced Computer Science and
Applications, 11. https://doi.org/10.14569/IJACSA.2020.0110515

Simperl, E., & Luczak-Rösch, M. (2014). Collaborative ontology engineering: A survey. The Knowledge
Engineering Review, 29(1), 101–131. https://doi.org/10.1017/S0269888913000192

Vaneman, W. K. (2016). Enhancing model-based systems engineering with the Lifecycle Modeling
Language. 2016 Annual IEEE Systems Conference (SysCon), 1–7.
https://doi.org/10.1109/SYSCON.2016.7490581

Vaneman, W. K. (2018). Evolving Model-Based Systems Engineering Ontologies and Structures. INCOSE
International Symposium, 28(1), 1027–1036. https://doi.org/10.1002/j.2334-5837.2018.00531.x

Vaneman, W.K., Sellers, J.J. & Dam, S.H. (2018). Essential LML: Lifecycle Modeling Language (LML): a
Thinking Tool for Capturing, Connecting and Communicating Complex Systems. SPEC
Innovations.

Yang, L., Cormican, K. & Yu, M. (2019). Ontology-based systems engineering: A state-of-the-art review.
Computers in Industry, 111, 148–171. https://doi.org/10.1016/j.compind.2019.05.003

Yang, L., Cormican, K. & Yu, M. (2021). Ontology Learning for Systems Engineering Body of Knowledge.
IEEE Transactions on Industrial Informatics, 17(2), 1039–1047.
https://doi.org/10.1109/TII.2020.2990953

https://doi.org/10.14569/IJACSA.2020.0110515
https://doi.org/10.1017/S0269888913000192
https://doi.org/10.1109/SYSCON.2016.7490581
https://doi.org/10.1002/j.2334-5837.2018.00531.x
https://doi.org/10.1016/j.compind.2019.05.003
https://doi.org/10.1109/TII.2020.2990953

	Introduction
	Background
	Methodology
	Results
	References

