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Abstract 
 
This study explores versioning of the Lifecycle Modeling Language (LML) ontology to address methods of 
constructing an unambiguous terminology. LML is a robust graphical modeling language that supports 
system development and design while adhering to systems engineering (SE) processes. Part of speech 
(POS) tagging is implemented with Python to extract ontological classes and object properties. Based on 
the research conclusions, innovative ontology techniques are established for the wider technical 
community to use and improve. These new methods will contribute to the modernization of manual 
approaches to creating ontologies. This paper/presentation begins by introducing key concepts based on 
a scholarly literature review. Research means will be described in detail with a subsequent discussion of 
limitations and results. After analysis, conclusions and recommendations will be provided. Future work 
is anticipated to contribute to ontology development.   

Introduction 
Systems engineering (SE) is responsible for delivering artifacts during product development and design 
that enable unambiguous communication among stakeholders. By constructing structural and 
behavioral models in a virtual environment, errors are caught earlier within the project lifecycle and can 
be mitigated with minimal effect of cost. A model that is viewed as an authoritative-source-of-truth 
(ASoT) enhances cross-discipline communication and encourages team collaboration.  
 
There is a need to increase the speed in which formal ontologies are created. This research leverages 
the existing Lifecycle Modeling Language (LML) ontology to understand ways that modern technology 
enhances language development based on textual specifications.  

Background 
LML is an open-standard modeling language for SEs that supports the full product lifecycle and the 
integration with other project disciplines (Vaneman, et al., 2018). LML incorporates data-driven 
engineering into a standard that satisfies the following SE needs: 

• easy to understand 
• easy to extend 
• supports functional and object-oriented approaches 
• useful for stakeholders across the system life cycle 
• supports all project life cycle stages from concept to disposal 

Figure 1 highlights the four (4) core LML tenets. 



 
Figure 1 Essential LML tenets. 

LML seeks to address discrepancies inherent to modeling languages that were created without a 
foundational ontology. The language represents functional and physical system aspects and introduces a 
hierarchy of classes that enable practitioners to capture essential design elements and the associated 
information (Vaneman, et al., 2018). 
 
Modeling languages capture a formalized ontology (i.e., internal logic) to connect relationships and 
facilitate data sharing between tools (Vaneman, et al., 2018). Without clear agreement on basic 
terminology and relationships, a system becomes susceptible to failure (Madni & Sievers, 2018). A 
common characteristic of ontology engineering methods is the notion of a process model that guides 
activities to yield a consistent set of roles and policies (Simperl & Luczak-Rösch, 2014). Research 
performed by Yang et al., 2019, describes how ontologies benefit the SE discipline. The authors conclude 
that ontologies provide a uniform and consistent basis for knowledge representation. 
 
Ontologies are viewed as the interface between the knowledge base and reality that guides information 
shareability, acquisition, and organization (Kang, et al., 2010). According to Noy & McGuinness, 2001, 
reasons for ontology development include: 

• Creating a common understanding 
• Enabling reuse of domain knowledge 
• Explicitly defining domain assumptions 
• Analysis of domain knowledge 

 
A critical aspect of ontologies is the ability to execute data reasoners that produce semantic 
relationships, which is made possible due with formal logic languages that represent ontologies (Bravo, 
et al., 2019). Ontologies are the primary and most important component of the semantic web (Sattar, et 
al., 2020). The semantic web is a network of linked data (LD) and its exchange as defined by WC3. 
Mediator systems federate and integrate data from disparate sources to elicit information that cannot 
be provided by an individual source (Ludascher, et al., 2001). Semantic web concepts provide 
opportunities for an easier and more collaborative environment between teams and modeling tools 
(Jacobs, et al., 2014). 
 
The LML taxonomy relies on the basic foundational ontology (BFO), a high-level ontology developed and 
designed to represent common categories of domain-specific languages (DSL) [Arp & Smith, 2011]. This 
specification is the basis for modern ontology languages. BFO gives structure to domain ontologies and 
is comprised of (1) continuants: entities that continue or persist through time, and (2) occurrents: the 
events in which continuants participate. Figure 2 shows the decomposition of the BFO continuant class. 



 

 
Figure 2 BFO continuants. 

The Web Ontology Language (OWL) is a syntax independent language that has several common 
representations (Drummond, 2006). OWL ontologies map to resource description framework (RDF) 
graphs and include annotations of classes and properties. OWL can enhance both precision and 
accessibility, but it requires mediation to enhance model semantics and resolve conflicts (Kulvatunyou, 
at al., 2014). RDF provides a common approach for expressing information to prevent data exchange 
between software applications from losing meaning (W3C, 2004). Each entity is given a unique 
internationalized resource identifier (IRI) to ensure statements are machine-readable. RDF defines all 
data as triples composed of a subject, predicate, and object (SPO) [Ernadote, 2015]. Each RDF triple 
represents a statement (i.e., fact) of a relationship between the subject and the object (Angles & 
Gutierrez, 2008). The SPO approach aligns with a graph-based data model profile that uses nodes and 
edges to convey domain structure.  
 
Terse RDF Triple Language (Turtle) allows an RDF graph to be written in a compact, natural text form 
(OMG, 2014) and facilitates the automatic transformation of data by direct mapping.  Python has the 
ability to create Turtle files that are interpretable by ontology editors and include classes, object 
properties, and data properties (Permatasari & Jayadianti, 2022). Given the similarities between 
ontologies and relational databases (RDB) [Zhang & Li, 2011], there is an expectation that this 
information can be transformed directly into axioms by directly mapping the corresponding fields. An 
axiom defines concepts that are always true (Blázquez, et al., 1998). Classes represent domain concepts 
while object properties describe the relationships between classes (Noy & McGuinness, 2001). 
 
A natural language processing (NLP) token is a group of characters (i.e., string) that represents a single 
meaning. Part-of-speech (POS) tagging is a grammatical classification used in NLP to identify individual 
words as a noun, adjective, verb, etc (Chiche & Yitagesu, 2022). The Natural Language Toolkit (NLTK) 
within Python is a platform that works with human-interpretable languages libraries that support 
tokenization, parsing, and semantic reasoning (Bird, et al., 2009). 

Methodology 
The NLTK library was leveraged to organize the ontology data related to POS. For this research, modern 
AI applications (e.g., ChatGPT, Claude.ai) were prompted to code Python scripts that will assist in 
ontology construction. The PyCharm integrated development environment (IDE) was used with Python 
to extract nouns (i.e., classes) and verbs (i.e., object properties). The LML v1.4 specification was loaded 
into the virtual environment for NLP parsing. Plurals of nouns were removed from the findings and 



variations of verbs were removed (e.g., “working” instead of “work”). Python proved able to produce a 
Turtle (.ttl) file with classes, object properties, and inverse object properties with proper prompt 
engineering. 
The initial ontology 
(http://www.semanticweb.org/stevendam/ontologies/2017/4/lifecyclemodelinglanguage.owl) is based 
on LML v1 (LML Steering Committee, 2015) and was last updated in 2017 according to the 
documentation.  
  
Figure 3 visually represents the LML v1 taxonomy. 

 
Figure 3  LML v1 taxonomy 

Table 1 shows basic metrics of the LML v1.1 ontology.  
 

Table 1  LML v1 Ontology Metrics 

METRIC AMOUNT 
AXIOM 1011 
CLASSES 20 
OBJECT PROPERTIES 87 

 
Figure 4 shows the twenty (20) core LML classes as nodes within the Protégé ontology editor using the 
Ontograf plug-in. 
 

http://www.semanticweb.org/stevendam/ontologies/2017/4/lifecyclemodelinglanguage.owl


 
Figure 4  LML core entities represented as nodes. 

Figure 5 shows a subset of LML core entities represented as nodes and the relationships between them 
as arcs. The graphic exemplifies the complexity of predicates between subjects and objects.  
 

 
Figure 5  Subset of LML entities with relationships. 

Relationships (i.e., predicates) are shown as arcs connecting the nodes (i.e., subjects and objects).  

Results 
After brief cleaning of the .csv files output by the Python code, the entire LML v1.4 specification 
document resulted in 426 classes and 278 predicates (and therefore 278 inverse predicates) for a total 
of 556 object properties. Applying the maximum multiplier (~21) and the minimum multiplier (~7) to the 



number of axioms resulted in an estimated 7,077 and 21,231, respectively. Applying the ~14 average to 
the initial number of axioms, approximately 14,000 are present in the specification itself as shown in 
Table 2. 
 

Table 2  Corrected LML v1 ontology metrics. 

METRIC INITIAL FINAL MULTIPLIER 
AXIOM 1,011 14,000 13.8 
CLASSES 20 426 21.3 
OBJECT PROPERTIES 87 556 6.4 

 
The vast difference between the LML v1 specification and the official OWL file is not unique, yet 
highlights universal difficulties encountered when constructing modeling languages that meet 
stakeholder needs while being machine and human interpretable to enhance collaboration and 
communication. 
 
Python code is currently being developed to extract RDF triples directly from a .txt file and each inverse 
statement. The first viable iteration of this implementation resulted in almost 115,000 triples (and 
therefore an equivalent amount of inverse triples), which suggests an exponential increase in triples 
based on classes and object properties within an ontology shown in Table 3.  
 

Table 3  Calculated LML v1 ontology metrics. 

METRIC INITIAL FINAL MULTIPLIER 
AXIOM 1,011 230,000 227.5 
CLASS 20 426 21.3 
OBJECT PROPERTIES 87 556 6.4 

 
Figure 6 further demonstrates the exponential pattern involved in the axiom relationship with the 
iterations of varying classes and object properties. 
 

  
Figure 6  Trendlines of LML v1 ontological axiom data. 
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Refinement to this approach is ongoing to reduce noise and clarify explicit triples within the LML 
specification. Future research will apply this methodology to assess additional modeling languages 
specific to the SE domain. 
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