< ENOLRA

MBSE Model Execution

February 2025

About
US

LEAVE THE PAST IN THE PAST
IT'S TIME TO EVOLVE, DIGITALLY

WE ARE A TRAINING, COACHING, AND CONSULTING
FIRM DEDICATED TO THE RAPID EVOLUTION OF OUR
CLIENTS WITHIN THE DIGITAL UNIVERSE. OUR
SERVICES ARE DIRECTED TOWARDS:

e DIGITAL ENGINEERING/TRANSFORMATION

 MODEL BASED SYSTEMS ENGINEERING

e ENTERPRISE ARCHITECTURE

e SOFTWARE ARCHITECTURE

o DATABASE ARCHITECTURE

e ONTOLOGIES

e COLLABORATION SERVER MANAGEMENT

Enola WILL train, coach, and mentor your
staff to be independently successful
as quickly as possible.

Yes, our mission is to work ourselves out of a job!

Course
DESCRIPTION

MBSE Model Execution is a four-day training
designed to provide professionals with a
background behind architectural simulation,
and introduction to the Simulation Toolkit
plugin, the simulation of multiple diagram
types, co-simulation with MATLAB, and how
to tie diagram simulations together to
automate the architecture.

This course provides a mix of slides,
instructor-led demonstrations, and hands-
on labs. Our trainers are all experienced

practitioners who understand the balance of

theory and practicality.

Prereqguisites:

Applying SysML with MagicDraw OR
Enterprise Architecture in the UAF
Required Software:

No Magic's MagicDraw (version 19.0+)
with the SysML plugin or equivalent No
Magic or Dassault Systemes CATIA Magic
products.
Take-Aways:
e understanding the Simulation Toolkit
plugin
e Working knowledge of architectural
simulation and automation

Course Introduction
Simulation of an
Architecture
Activity Diagrams
State Machine
Diagrams

e Sequence Diagrams

e Parametric Diagrams

e Automated
Requirement
Verification via
Simulation

e Utilizing MATLAB
and Simulink Co-
Simulation

e Simulation
Configuration
Diagram

e User Interface
Modeling

e Action Language
Helper

COURSE CONTENT

Simulation aof an
Architecture

-

[true] [false]

Simulating the architecture enables users to verify that the S - ——. N——
architecture will meet the specified requirements and enables
both understanding and communication with stakeholders.

" Decision Input
«functions=addBy5

int("result is not 27");

This module covers:
e Purpose of Simulation
e Cameo Simulation Toolkit Key Features
e Simulation Sample Projects
e Simulation Project Template
e Model Simulation Engines

act [Activity] Boot-Up[Boot-Up]

in input : Power

callocates
controller : Main Processor

: Start Boot-Up
Function

l.
: Load System
Configuration

1

: Send Load
Commands to
other
Subsystems

ACTIVITY DIAGRAMS

Activity Diagrams allow the definition of
complex functional flow, and the simulation
of these flows is essential to verify complex
control logic.

This module covers:
e Signals
e Operations/ Signal Receptions
e Activity Diagram Review
e fUML
e Supported vs Unsupported Elements for
Simulation

State Machine
Diagrams

tate Machine] Cell Phone[Cell Phone |

Power On [batteryLevel = 5]
entry / Intiakze

State Machines are behavioral R
elements that enable state-transition .- %
based behavior, making them excellent
for driving the functionality of a
system.

Select Game Select Streaming App

'
idie

=
| o
| ®
| %
la
[+
|
| B
| @
| =
|o

‘ Make Cal

Ringing
entry / Ring

_--) after (2s) / numberQfRings++
-E-—-""

Close Application

L
L
Play Game [numberOfRings == 3] Watch Show |

[Call Answered) Jr [else]

=

This module covers: - =g
e State Machine Review oo ttetewi o) | e e
e Supported vs Unsupported
Elements for Simulation

: Caller zblocks |;]
cellPhone : Cell Phone

|' off]

Sequence Diagrams define instance-based
message flows for behaviors with a strict
sequence, like test case scenarios.

This module covers:
e Sequence Diagram Review
e Element Functionalities in Simulation
e Supported vs Unsupported Elements for

Simulation

Parametric
Diagrams

Parametric Diagrams are a
special kind of internal block
diagram used to bind value
properties to constraint
parameters to calculate
guantitative system
characteristics.

This module covers:
e Value Types / Enumerations
e Value Properties
e Constraint Blocks
e Constraint Properties
e Parametric Diagram Review

par [Block] Cell Phone [Cell Phone Expected Life]

powerConsumption «constraints
Expected_Life_Calculation : Expected Life
{expectedLife = capacity / powerConsumption}

ftotalPowerConsumption : power[watt]

power : Power Subsystem
battery : Battery

maxCapacity : power[watt]

expectedLife
aconstraints rﬂ:cm" ITe

Min_Life : Min Life expectedLife
{expectedLife >= 20000} ——+ ______ /expectedlife : time[second]

IEGULAR Regquireme

Requirement Verification: [] Pass [] Fail

MHame

SUN_RE(Requirements

Spring Deflect
Distance

it
Tire Diameter
Tire Height
Tire Width
Diameter
Pad Center L rr|-5|'1|'|

Brake Pad Life

Pad Width

nrements

eflection distance

er Length shall be between {
all have a projected life of

dth shall be more than or egual
meters,

Context [optsonal);

Value

stance ; diameter{metre]

pring.freelength : distance{ millimetre]
ring.outerDiameter : diameterimillimetre)
gth : d stance]millimetre] <

[kilogram]

Wl SUSDEn t | mallimnetre]
USpEnsio ewadth : ce{ millimetre]
ke.roborrotorQuterDiameter -:ll;r":ﬂcr[r"uillm:!lﬂ
[brake pad.padlength : |er'3'.'1[-11r!rr]
¥l brake.pad.padl

[brake.pad.padWidth : diametes| metre]

AUTOMATED REQUIREMENT

|.'.'|':| 4

VERIFICATION

By combining text-based
requirements with descriptive and
analytical models in SysML,
requirement verification can be
automated.

This module covers:
e Refining Requirements with
Constraints
e Verification in Requirement
Tables

Utilizing MATLAB and
Simulink Co-Sim

~or simulations requiring more advanced computation,
neadless co-simulation with MATLAB as the math engine can
e launched to integrate MATLAB and Simulink models with
the system architecture.

This module covers:
e MATLAB & Simulink Drag-n-Drop for Constraints & Actions
e Simulink Import for Internal Block Diagrams
e Shared MATLAB Sessions
e Utilizing GitHub with MATLAB & MagicDraw

Simulatian
Configuration
Diagram

The Simulation Configuration Diagram
allows for more advanced simulation
with pre-configured options for
execution and options for saving
simulation data.

This module covers:
e Simulation Configurations
e Charts
e Image Switcher and Active Image
e Execution Listeners

package Simulation[oy Cell Phone Battery Simulation]

«SimulationConfig»
Cell Phone Battery Drain

Ul = ;~ Battery Level

addControlPanel = false

animationSpeed = 95

autoStart = true

autostartActiveObjects = true
cloneReferences = false
constraintFailureAsBreakpoint = false
executionListeners = 1:'5::;:Eattery Data Export
executionTarget = LICell Phone
fireValueChangeEvent = true
initializeReferences = false
numberOfRuns = 1

openSimulationPane = true
recordTimestamp = false
rememberFailureStatus = false
runForksinParallel = true
showActiveStatelmages = both
showActiveStatesOnPartShapes = true
showFlowinglnformation = true
showHeldTokensInActivityDiagrams = false
showRuntimeValuesOnPartShapes = true
silent = false

solveAfterinitialization = true
startWebServer = false

terminate StreamingBehaviorsByOutputParameterMultiplicity = false

timeVariableName = "simtime"
treatAliClassifiersAsActive = true

« TimeSeriesChart»
Battery Level

represents = E]Cell Phone
value = [VibatteryLevel

annotateFailures = true
fixedRange = false

gridX = true

gridY = true
keepOpenAfterTermination = false
linearinterpolation = true
maxValue ="0.0"

minValue ="0.0"

plotColor = "#BC334E"
recordPlotDataAs = CSV

«CSV Export»
Battery Data Export

fileName = "CellPhone_Battery_Data.csv"
recordTime = true
writeAtTheEnd = false

represents = (=]Cell Phone
value =
[V]power.battery.batteryLevel
[Vlpower.battery.currentCapacity
[VIpower.battery.maxCapacity

USER INTERFACE
MODELING DIRGRAM

The User Interface Modeling Diagram allows
for the design of Graphical User Interfaces
to be shown during run time. These can
display run-time values and control aspects
of the simulation.

This module covers:
e Simulation Support
e Containers, Buttons, and Text
e Other Ul Elements
e Ul Control Hierarchy
e Structure to Ul Hierarchy Example

Action Language Helper

The Action Language Helper (ALH) is a special API for model
execution that allows for more complicated simulations and
executable models.

This module covers:
e Methods
o Get/Set Value
o Get Tag Value
o Create/Send Signal
o Using Global Variables
e Predefined Variables
e Language Settings
e Unboxing in JavaScript Rhino

-

FS1 = ALH.getValue(fuelTank1,"fuelSensor");
FS2 = ALH.getValue(fuelTank2,"fuelSensor”);
FS3 = ALH.getValue(fuelTank3,"fuelSensor");

L1 = ALH.getValue(FS1,"fuelLevel");
L2 = ALH.getValue(FS2,"fuelLevel");
L3 = ALH.getValue(FS3,"fuelLevel");

avglLevel = (L1 + L2 +L3)/3;

ALH.setValue("avgFuellLevel”, avglLevel);
!

W

(@)

CONTHCT US

www.enola.com ¢
training@enolatech.com K4
+1 877 2817341

linkedin.com/company/enolatech m

http://www.enola.com/

